
DIP 6620 Spring 2004 Final Project Paper 1

Abstract—This paper is a review of the block matching

algorithms used for motion estimation in video compression. It
implements and compares 7 different types of block matching
algorithms that range from the very basic Exhaustive Search to
the recent fast adaptive algorithms like Adaptive Rood Pattern
Search. The algorithms that are evaluated in this paper are
widely accepted by the video compressing community and have
been used in implementing various standards, ranging from
MPEG1 / H.261 to MPEG4 / H.263. The paper also presents a
very brief introduction to the entire flow of video compression.

Index Terms— Block matching, motion estimation, video
compression, MPEG, H.261, H.263

I. INTRODUCTION

ITH the advent of the multimedia age and the spread of
Internet, video storage on CD/DVD and streaming

video has been gaining a lot of popularity. The ISO Moving
Picture Experts Group (MPEG) video coding standards pertain
towards compressed video storage on physical media like
CD/DVD, where as the International Telecommunications
Union (ITU) addresses real-time point-to-point or multi-point
communications over a network. The former has the advantage
of having higher bandwidth for data transmission.

In either standard the basic flow of the entire compression-
decompression process is largely the same and is depicted in
Fig. 1. The encoding side estimates the motion in the current
frame with respect to a previous frame. A motion compensated
image for the current frame is then created that is built of
blocks of image from the previous frame. The motion vectors
for blocks used for motion estimation are transmitted, as well
as the difference of the compensated image with the current
frame is also JPEG encoded and sent. The encoded image that
is sent is then decoded at the encoder and used as a reference
frame for the subsequent frames. The decoder reverses the
process and creates a full frame. The whole idea behind
motion estimation based video compression is to save on bits
by sending JPEG encoded difference images which inherently
have less energy and can be highly compressed as compared to

Manuscript received April 26, 2004. This work was done as partial

fulfillment for the completion of class ECE 6620, Digital Image Processing,
at Utah State University.

Aroh Barjatya is a graduate student with the ECE dept at Utah State
University, Logan Utah. 84322 (phone: 435-881-1616; e-mail:
arohb@cc.usu.edu).

sending a full frame that is JPEG encoded. Motion JPEG,
where all frames are JPEG encoded, achieves anything
between 10:1 to 15:1 compression ration, where as MPEG can
achieve a compression ratio of 30:1 and is also useful at 100:1
ratio [1] [2] [3]. It should be noted that the first frame is
always sent full, and so are some other frames that might occur
at some regular interval (like every 6th frame). The standards
do not specify this and this might change with every video
being sent based on the dynamics of the video.

The most computationally expensive and resource hungry
operation in the entire compression process is motion
estimation. Hence, this field has seen the highest activity and
research interest in the past two decades. This paper
implements and evaluates the fundamental block matching
algorithms from the mid-1980s up to the recent fast block
matching algorithms of year 2002. It also presents a literature
review of few papers from the last 3 years. The algorithms that
have been implemented are Exhaustive Search (ES), Three
Step Search (TSS), New Three Step Search (NTSS), Simple
and Efficient TSS (SES), Four Step Search (4SS), Diamond
Search (DS), and Adaptive Rood Pattern Search (ARPS).
Section II explains block matching in general and then the
above algorithms in detail. Section III compares them and
presents some simulation results. Section IV is a literature
survey of the more recent algorithms, followed by summary
and references.

Block Matching Algorithms
For Motion Estimation

Aroh Barjatya, Student Member, IEEE

W

Fig. 1. MPEG / H.26x video compression process flow.

DIP 6620 Spring 2004 Final Project Paper 2

II. BLOCK MATCHING ALGORITHMS

The underlying supposition behind motion estimation is that
the patterns corresponding to objects and background in a
frame of video sequence move within the frame to form
corresponding objects on the subsequent frame. The idea
behind block matching is to divide the current frame into a
matrix of ‘macro blocks’ that are then compared with
corresponding block and its adjacent neighbors in the previous
frame to create a vector that stipulates the movement of a
macro block from one location to another in the previous
frame. This movement calculated for all the macro blocks
comprising a frame, constitutes the motion estimated in the
current frame. The search area for a good macro block match
is constrained up to p pixels on all fours sides of the
corresponding macro block in previous frame. This ‘p’ is
called as the search parameter. Larger motions require a larger
p, and the larger the search parameter the more
computationally expensive the process of motion estimation
becomes. Usually the macro block is taken as a square of side
16 pixels, and the search parameter p is 7 pixels. The idea is
represented in Fig 2. The matching of one macro block with
another is based on the output of a cost function. The macro
block that results in the least cost is the one that matches the
closest to current block. There are various cost functions, of
which the most popular and less computationally expensive is
Mean Absolute Difference (MAD) given by equation (i).
Another cost function is Mean Squared Error (MSE) given by
equation (ii).

��
−

=

−

=

−=
1

0

1

0
2

1 N

i

N

j
ijij RC

N
MAD

(i)

()
21

0

1

0
2

1
��

−

=

−

=

−=
N

i

N

j
ijij RC

N
MSE

 (ii)

where N is the side of the macro bock, Cij and Rij are the

pixels being compared in current macro block and reference
macro block, respectively.

Peak-Signal-to-Noise-Ratio (PSNR) given by equation (iii)

characterizes the motion compensated image that is created by
using motion vectors and macro clocks from the reference
frame.

()

��

�
��

�=
MSE

LogPSNR
data original of value peak to Peak 2

1010

(iii)

A. Exhaustive Search (ES)
This algorithm, also known as Full Search, is the most

computationally expensive block matching algorithm of all.
This algorithm calculates the cost function at each possible
location in the search window. As a result of which it finds the
best possible match and gives the highest PSNR amongst any
block matching algorithm. Fast block matching algorithms try
to achieve the same PSNR doing as little computation as
possible. The obvious disadvantage to ES is that the larger the
search window gets the more computations it requires.

B. Three Step Search (TSS)
This is one of the earliest attempts at fast block matching

algorithms and dates back to mid 1980s. The general idea is
represented in Figure 3. It starts with the search location at the
center and sets the ‘step size’ S = 4, for a usual search
parameter value of 7. It then searches at eight locations +/- S
pixels around location (0,0). From these nine locations
searched so far it picks the one giving least cost and makes it
the new search origin. It then sets the new step size S = S/2,
and repeats similar search for two more iterations until S = 1.
At that point it finds the location with the least cost function
and the macro block at that location is the best match. The
calculated motion vector is then saved for transmission. It
gives a flat reduction in computation by a factor of 9. So that

Fig. 2. Block Matching a macro block of side 16 pixels and a search
parameter p of size 7 pixels.

Fig. 3. Three Step Search procedure. The motion vector is (5, -3).

DIP 6620 Spring 2004 Final Project Paper 3

for p = 7, ES will compute cost for 225 macro blocks whereas
TSS computes cost for 25 macro blocks.

The idea behind TSS is that the error surface due to motion
in every macro block is unimodal. A unimodal surface is a
bowl shaped surface such that the weights generated by the
cost function increase monotonically from the global
minimum.

C. New Three Step Search (NTSS)
NTSS [4] improves on TSS results by providing a center

biased searching scheme and having provisions for half way
stop to reduce computational cost. It was one of the first
widely accepted fast algorithms and frequently used for
implementing earlier standards like MPEG 1 and H.261.

The TSS uses a uniformly allocated checking pattern for
motion detection and is prone to missing small motions. The
NTSS process is illustrated graphically in Fig 4. In the first
step 16 points are checked in addition to the search origin for
lowest weight using a cost function. Of these additional search
locations, 8 are a distance of S = 4 away (similar to TSS) and
the other 8 are at S = 1 away from the search origin. If the
lowest cost is at the origin then the search is stopped right here
and the motion vector is set as (0, 0). If the lowest weight is at
any one of the 8 locations at S = 1, then we change the origin
of the search to that point and check for weights adjacent to it.
Depending on which point it is we might end up checking 5
points or 3 points (Fig 7(b) & (c)). The location that gives the
lowest weight is the closest match and motion vector is set to
that location. On the other hand if the lowest weight after the
first step was one of the 8 locations at S = 4, then we follow
the normal TSS procedure. Hence although this process might
need a minimum of 17 points to check every macro block, it
also has the worst-case scenario of 33 locations to check.

D. Simple and Efficient Search (SES)
SES [5] is another extension to TSS and exploits the

assumption of unimodal error surface. The main idea behind
the algorithm is that for a unimodal surface there cannot be
two minimums in opposite directions and hence the 8 point
fixed pattern search of TSS can be changed to incorporate this
and save on computations.

The algorithm still has three steps like TSS, but the
innovation is that each step has further two phases. The search
area is divided into four quadrants and the algorithm checks
three locations A,B and C as shown in Figure Y. A is at the
origin and B and C are S = 4 locations away from A in
orthogonal directions. Depending on certain weight
distribution amongst the three the second phase selects few
additional points (Fig 5). The rules for determining a search
quadrant for seconds phase are as follows:

If MAD(A) � MAD(B) and MAD(A) � MAD(C), select (b);
If MAD(A) � MAD(B) and MAD(A) � MAD(C), select (c);
If MAD(A) < MAD(B) and MAD(A) < MAD(C), select (d);
If MAD(A) < MAD(B) and MAD(A) � MAD(C), select (e);

Fig. 4. New Three Step Search block matching: Big circles are checking
points in the first step of TSS and the squares are the extra 8 points added
in the first step of NTSS. Triangles and diamonds are second step of
NTSS showing 3 points and 5 points being checked when least weight in
first step is at one of the 8 neighbors of window center.

Fig. 5. Search patterns corresponding to each selected quadrant: (a)
Shows all quadrants (b) quadrant I is selected (c) quadrant II is selected
(d) quadrant III is selected (e) quadrant IV is selected

Fig. 6. The SES procedure. The motion vector is (3, 7) in this example.

DIP 6620 Spring 2004 Final Project Paper 4

Fig. 8. Four Step Search procedure. The motion vector is (3, -7).

Once we have selected the points to check for in second

phase, we find the location with the lowest weight and set it as
the origin. We then change the step size similar to TSS and
repeat the above SES procedure again until we reach S = 1.
The location with the lowest weight is then noted down in
terms of motion vectors and transmitted. An example process
is illustrated in Fig 6.

Although this algorithm saves a lot on computation as
compared to TSS, it was not widely accepted for two reasons.
Firstly, in reality the error surfaces are not strictly unimodal
and hence the PSNR achieved is poor compared to TSS.
Secondly, there was another algorithm, Four Step Search, that
had been published a year before that presented low
computational cost compared to TSS and gave significantly
better PSNR.

E. Four Step Search (4SS)
Similar to NTSS, 4SS [6] also employs center biased

searching and has a halfway stop provision. 4SS sets a fixed
pattern size of S = 2 for the first step, no matter what the
search parameter p value is. Thus it looks at 9 locations in a
5x5 window. If the least weight is found at the center of search
window the search jumps to fourth step. If the least weight is at
one of the eight locations except the center, then we make it
the search origin and move to the second step. The search
window is still maintained as 5x5 pixels wide. Depending on

where the least weight location was, we might end up checking
weights at 3 locations or 5 locations. The patterns are shown in
Fig 7. Once again if the least weight location is at the center of
the 5x5 search window we jump to fourth step or else we move
on to third step. The third is exactly the same as the second
step. IN the fourth step the window size is dropped to 3x3, i.e.
S = 1. The location with the least weight is the best matching
macro block and the motion vector is set to point o that
location. A sample procedure is shown in Fig 8. This search
algorithm has the best case of 17 checking points and worst
case of 27 checking points.

F. Diamond Search (DS)
DS [7] algorithm is exactly the same as 4SS, but the search

point pattern is changed from a square to a diamond, and there
is no limit on the number of steps that the algorithm can take.
DS uses two different types of fixed patterns, one is Large
Diamond Search Pattern (LDSP) and the other is Small
Diamond Search Pattern (SDSP). These two patterns and the
DS procedure are illustrated in Fig. 9. Just like in FSS, the first
step uses LDSP and if the least weight is at the center location
we jump to fourth step. The consequent steps, except the last
step, are also similar and use LDSP, but the number of points
where cost function is checked are either 3 or 5 and are
illustrated in second and third steps of procedure shown in
Fig.9. The last step uses SDSP around the new search origin
and the location with the least weight is the best match. As the
search pattern is neither too small nor too big and the fact that
there is no limit to the number of steps, this algorithm can find
global minimum very accurately. The end result should see a
PSNR close to that of ES while computational expense should
be significantly less.

Fig. 7. Search patterns of the FSS. (a) First step (b) Second/Third step
(c)Second/Third Step (d) Fourth Step

Fig. 9. Diamond Search procedure. This figure shows the large
diamond search pattern and the small diamond search pattern. It also
shows an example path to motion vector (-4, -2) in five search steps-
four times of LDSP and one time of SDSP.

DIP 6620 Spring 2004 Final Project Paper 5

G. Adaptive Rood Pattern Search (ARPS)
ARPS [8] algorithm makes use of the fact that the general

motion in a frame is usually coherent, i.e. if the macro blocks
around the current macro block moved in a particular direction
then there is a high probability that the current macro block
will also have a similar motion vector. This algorithm uses the
motion vector of the macro block to its immediate left to
predict its own motion vector. An example is shown in Fig. 10.
The predicted motion vector points to (3, -2). In addition to
checking the location pointed by the predicted motion vector,
it also checks at a rood pattern distributed points, as shown in
Fig 10, where they are at a step size of S = Max (|X|, |Y|). X
and Y are the x-coordinate and y-coordinate of the predicted
motion vector. This rood pattern search is always the first step.
It directly puts the search in an area where there is a high
probability of finding a good matching block. The point that
has the least weight becomes the origin for subsequent search
steps, and the search pattern is changed to SDSP. The
procedure keeps on doing SDSP until least weighted point is
found to be at the center of the SDSP. A further small
improvement in the algorithm can be to check for Zero Motion
Prejudgment [8], using which the search is stopped half way if
the least weighted point is already at the center of the rood
pattern.

The main advantage of this algorithm over DS is if the
predicted motion vector is (0, 0), it does not waste
computational time in doing LDSP, it rather directly starts
using SDSP. Furthermore, if the predicted motion vector is far
away from the center, then again ARPS save on computations
by directly jumping to that vicinity and using SDSP, whereas
DS takes its time doing LDSP. Care has to be taken to not
repeat the computations at points that were checked earlier.
Care also needs to be taken when the predicted motion vector
turns our to match one of the rood pattern location. We have to
avoid double computation at that point. For macro blocks in
the first column of the frame, rood pattern step size is fixed at
2 pixels.

III. SIMULATION RESULTS

During the course of this project all of the above 7
algorithms have been implemented. ‘Caltrain’ video sequence
with a distance of 2 between current frame and reference frame
was used to generate the frame-by-frame results of the
algorithms. Fig. 11 shows a plot of the average number of
searches required per macro block for the Caltrain sequence
using the 6 fast block matching algorithms. The PSNR
comparison of the compensated images generated using the
algorithms is shown in Fig 12. The results are extremely
similar to the results of [7] and [8].

As is shown by Fig. 11, 4SS, DS and ARPS come pretty
close to the PSNR results of ES. While the ES takes on an
average around ~205 searches per macro block, DS and 4SS
drop that number by more then an order of magnitude. ARPS
further drops by a factor of 2 compared to DS. NTSS and TSS
although do not come close in PSNR performance to the
results of ES, but even they drop down the number of
computations required per macro block by almost an order of
magnitude. SES takes up less number of search point
computations amongst all but ARPS. It however also has the

Fig. 10. Adaptive Root Pattern: The predicted motion vector is (3,-2) ,
and the step size S = Max(|3|, |-2|) = 3.

Fig. 12. PSNR performance of Fast Block Matching Algorithms.
Caltrain Sequence was used with a frame distance of 2.

Fig. 11. Search points per macro block while computing the PSNR
performance of Fast Block Matching Algorithms.

DIP 6620 Spring 2004 Final Project Paper 6

worst PSNR performance. Although PSNR performance of
4SS, DS, and ARPS is relatively the same, ARPS takes a
factor of 2 less computations and hence is the best of the fast
block matching algorithms studied in this paper. The results
are similar to that of [8].

IV. SOME OTHER RECENT ALGORITHMS

DS proved to be best block matching algorithm of the last
century. Every new algorithm in the new millennia is an
improvement on the results of DS. Cross Diamond Search
(CDS) [9], Small Cross Diamond Search (SCDS) [10], and
New Cross Diamond Search (NCDS) [11], all improve on the
performance of DS by modifying the starting search pattern
from LDSP to cross search pattern (CSP) shown in Fig 13.
Amongst themselves these three algorithms differ with respect
to the number of points being used out of the CSP. CDS uses
all the 9 points whereas SCDS and NCDS use only the inner 5
points to start and then expand their search. However,
analogous to the NTSS that eventually ends up doing similar
calculations like TSS, these CSP based variants end up going
the DS way. Another reason for their improvement over DS is
the provision of multiple half-step stops. It should be
mentioned that out of the three CSP based variants only NCDS
comes closer to the performance of ARPS. The others
although an improvement on DS, do not match the
performance of ARPS.

V. SUMMARY

The past two decades have seen the growth of wide
acceptance of multimedia. Video compression plays an
important role in archival of entertainment based video
(CD/DVD) as well as real-time reconnaissance / video
conferencing applications. While ISO MPEG sets the standard
for the former types of application, ITU sets the standards for
latter low bit rate applications. In the entire motion based
video compression process motion estimation is the most
computationally expensive and time-consuming process. The
research in the past decade has focused on reducing both of
these side effects of motion estimation.

Block matching techniques are the most popular and

efficient of the various motion estimation techniques. This
paper first describes the motion compensation based video
compression in brief. It then illustrates and simulates 7 of the
most popular block matching algorithms, with their
comparative study at the end. Three more, very recent, block
matching algorithms are studied in the end as part of literature
review. Of the various algorithms studied or simulated during
the course of this final project ARPS turns out to be the best
block matching algorithm.

REFERENCES
[1] Borko Furht, Joshua Greenberg, Raymond Westwater, Motion

Estimation Algorithms For Video Compression. Massachusetts: Kluwer
Academic Publishers, 1997. Ch. 2 & 3.

[2] M. Ghanbari, Video Coding, An Introduction to Standard Codecs,
London: The Institute of Electrical Engineers, 1999. Ch.2, 5, 6, 7 & 8

[3] Iain E. G. Richardson, Video Codec Design, West Sussex: John Wiley
& Sons Ltd., 2002, Ch. 4, 5, & 6.

[4] Renxiang Li, Bing Zeng, and Ming L. Liou, “A New Three-Step Search
Algorithm for Block Motion Estimation”, IEEE Trans. Circuits And
Systems For Video Technology, vol 4., no. 4, pp. 438-442, August
1994.

[5] Jianhua Lu, and Ming L. Liou, “A Simple and Efficent Search
Algorithm for Block-Matching Motion Estimation”, IEEE Trans.
Circuits And Systems For Video Technology, vol 7, no. 2, pp. 429-433,
April 1997

[6] Lai-Man Po, and Wing-Chung Ma, “A Novel Four-Step Search
Algorithm for Fast Block Motion Estimation”, IEEE Trans. Circuits
And Systems For Video Technology, vol 6, no. 3, pp. 313-317, June
1996.

[7] Shan Zhu, and Kai-Kuang Ma, “ A New Diamond Search Algorithm for
Fast Block-Matching Motion Estimation”, IEEE Trans. Image
Processing, vol 9, no. 2, pp. 287-290, February 2000.

[8] Yao Nie, and Kai-Kuang Ma, “Adaptive Rood Pattern Search for Fast
Block-Matching Motion Estimation”, IEEE Trans. Image Processing,
vol 11, no. 12, pp. 1442-1448, December 2002.

[9] Chun-Ho Cheung, and Lai-Man Po, “A Novel Small Cross-Diamond
Search Algorithm for Fast Video Coding and Video Conferencing
Applications”, Proc. IEEE ICIP, September 2002.

[10] Chun-Ho Cheung, and Lai-Man Po, “A Novel Cross-Diamond Search
Algorithm for Fast Block Motion Estimation”, IEEE Trans. Circuits
And Systems For Video Technology, vol 12., no. 12, pp. 1168-1177,
December 2002.

[11] C. W. Lam, L. M. Po and C. H. Cheung, "A New Cross-Diamond
Search Algorithm for Fast Block Matching Motion Estimation",
Proceeding of 2003 IEEE International Conference on Neural Networks
and Signal Processing, pp. 1262-1265, Dec. 2003, Nanjing, China.

Fig. 13. Cross Search Pattern: This pattern is used by CDS, SCDS, and
NCDS as their search start pattern. While CDS uses all 9 points, SCDS
and NCDS use only the inner 5 points.

