SEMI-SUPERVISED LEARNING FOR VISUAL SIGNAL PROCESSING

Chih-Chung Hsu (許志仲) Assistant Professor ACVLab, Institute of Data Science National Cheng Kung University https://cchsu.info

Today's class

- Self and semi-supervised learning based Applications
 - Identity-preserving face hallucination [TIP19]
 - Fake face image detection [ICIP19]
 - Gastric cancer detection for small-scale M-NBI dataset [US. Patent]
 - Vehicle Re-identification in the wild [VCIP19]
- Summary

SEMI-SUPERVISED LEARNING

Incorporating partial label information

Deep Semi-Supervised Learning (DSL)

- Take some advantages form supervised/unsupervised learning
 - Problem: How?
- Definition of DSL
 - Given a dataset with partial label information
 - Partial data have labels (Few-shot learning)
 - Usually EM can be used to solve this problem
 - Initial model can be learning based on labeled data (Transfer learning)
 - Get pseudo labels of unlabeled data using the model (MixMatch, 19')
 - Re-training model and repeat...
 - Partial label information only (i.e., same/different identity)
 - Data can be augmented
 - Siamese Network [LeCun 05]

Siamese Network

- It is easy to learn from the limited samples
 - Real-world applications
 - Data may have few labels...
 - E.g. 1000 classes, 5 images/class = 50,000 samples
- Siamese Network
 - Pairwise Learning
 - Make data "Pairwise"
 - Same identity of a pair: y=1
 - Different identities of a pair: y=0
 - 50,000 samples → C(50000,2) = 1,249,975,000 pairs
 - Usually used in "face verification" or person re-identifications

Face Verification versus Face Recognition

Siamese Network

- Key to face verification
 - Discriminative feature representation
 - A pair with the same identity
 - Features should be similar to each other
 - A pair with the different identities
 - Features should be different from each other
- Applications
 - Few-shot learning (learn features from the limited training samples)
 - Based on pairwise learning or the loss functions from rank/metric learning

Siamese Network (cont.)

- Siamese Network Architecture
 - Learning to capture the discriminative feature
 - Simply minimizing the distance between two samples with the same identity

Outline

- Self and semi-supervised learning based Applications
 - Identity-preserving face hallucination [TIP19]
 - Fake face image detection [ICIP19]
 - Gastric cancer detection for small-scale M-NBI dataset [US. Patent]
 - Vehicle Re-identification in the wild [VCIP19]
 - Resolution-aware Super-resolution [SAM20]
- Summary

ICIP 18, IEEE Transactions on Image Processing (TIP), Dec. 2019. Contribute to my MOST Project

ACVLab

Traditional Face Hallucination

LR Bicubic SR Amazing but identity unrecognizable!

We achieve

HR

Face Hallucination

$$\mathbf{I} \cong \mathbf{P} \boldsymbol{\alpha} = \mathbf{R}$$
$$\boldsymbol{\alpha}^* = ((\mathbf{P}_L)^{\mathrm{T}} \cdot \mathbf{P}_L)^{-1} \cdot (\mathbf{P}_L)^{\mathrm{T}} \cdot \mathbf{I}_L$$

Dictionary

CCHSU@ACVLab

Learning to Hallucinating Face

- Traditional approach
 - Dictionary learning by PCA, NMF, ONMF,...etc
- Deep learning-based approach
 - End-to-end architecture
 - Input low-resolution face image, out high-resolution face image directly.
- Deep neural network has different structures
 - CNN-based (Convolutional neural network)
 - Upsampling layer upscales input signal
 - GAN-based (Generative adversarial network)
 - High quality result
 - May result in identity-unrecognizable

CNN-based Approach (AAAI'15)

Using CNN to learn the dictionary and its coefficients

CNN-based Approach (AAAI'15)

Pros

- First approach based on deep neural network (DNN)
- Alignment is unnecessary
- State-of-the-art result (2015)
- Cons
 - The visual quality of reconstructed face image will be poor when
 - Extreme low-resolution
 - i.e. 8x8
 - Identity-unrecognizable

Cascaded CNN Approach (ECCV'16)

- Cascaded multiple CNN to enhance visual quality
- Gate network can be used to fusion of two nets

Zhu, Shizhan, et al. "Deep cascaded bi-network for face hallucination." *European Conference on Computer Vision*. Springer International Publishing, 2016.

Cascaded CNN Approach (ECCV'16)

Pros

- The best performance so far
- Alignment-free
- More realistic
- Cons
 - It is very hard to train
 - Released code has no training codes
 - A lot of parameters need to be tuned manually
 - Extreme low-resolution inputs
 - Cannot obtain promising results

GAN (Generative Adversarial Net) for Face Hallucination

- Use discriminator to refine the upsampling network
 - Dissimilar to the ground truth

Tuzel, Oncel, Yuichi Taguchi, and John R. Hershey. "Global-Local Face Upsampling Network." arXiv preprint *arXiv:1603.07235* (2016). [no code] CCHSU@ACVLab 19

GAN for Face Hallucination (II)

Discriminator is used to judge the visual quality

Yu, Xin, and Fatih Porikli. "Ultra-resolving face images by discriminative generative networks." *ECCV*, 2016. [no code] 2022/5/10 CCHSU@ACVLab

GAN-based Face Hallucination

- Pros:
 - High visual quality of the reconstructed image
- Cons:
 - May be identity-unrecognizable

Our Goal

- High visual quality reconstruction
 - Even in extreme low-resolution inputs
- Identity-recognizable reconstruction
 - As similar to the ground truth as possible

LR Interpolation HR

High visual quality only

Identity-recognizable & high visualcchsu@acvLabquality22

Our Solution

Key idea

- Label embedding
 - Use the label information to fine-tune the generator
 - Identity-recognizable reconstruction
- We propose "Siamese GAN" (SiGAN)
 - Label information will guide the "generator" how to obtain both high-visual quality and identity-recognizable result
 - Partial label information needs only

The Proposed SiGAN

The Loss Function of The Proposed SiGAN

Loss function for our generator

$$\min_{G} \max_{D} V(D,G) = E_D \left[\log D(\mathbf{x}_1^{HR}) \right] + E_G \left[\log \left(1 - D(G(\mathbf{x}_1^{LR})) \right) \right] + E_C \left[G(\mathbf{x}_1^{LR}), G(\mathbf{x}_2^{LR}) \right],$$

- subject to $\|y^{HR} y^{SR}\|_1 < \epsilon$
- SR result: G(x^{LR})
- *E_C* represents contrastive loss

Contrastive Loss for SiGAN

- If we directly minimize Ew(X1, X2)
 - The energy and the loss can be made zero by simply making Gw(X1) a constant function
 - We don't want to see that
- By adding a contrastive term
 - The loss function can be

s parameters CNN'

The same or not (0/1)

Partial loss function for a genuine pair

Partial loss function for an impostor pair

D

Test Stage of The Proposed SiGAN

A simple forward process

CCHSU@ACVLab

Experiment Settings

- LR: 8x8
- HR: 32x32 (4x upscaling factor)
- #Identities of training set: 10,575
- #Training images: 491,131
- #Test images: 3,283
- Face recognition engine: FACENET (State-of-the-art)

Subjective Result (8x8→32x32)

Face hallucination: Identity-recognizable reconstruction

Subjective Result ($16x16 \rightarrow 64x64$)

Objective Results

Method	Top-1	Top-5	Top-10
HR (32×32)	30.4%	51.2%	59.6%
LR (8×8)	10.7%	19.5%	33.1%
Bicubic	10.8%	20.1%	34.4%
DFCG [11]	9.3%	17.7%	21.4%
UR-DGN [9]	9.9%	18.6%	22.7%
DCGAN [22]	4.6%	10.9%	16.8%
PRSR [25]	10.8%	18.8%	24.4%
SR-GAN [15]	8.8%	11.1%	19.4%
Wavelet-SRNet [17]	12.8%	20.2%	30.3%
SiGAN (ResNet)	15.8%	27.5%	40.4%
SiGAN (DenseNet)	15.1%	26.8%	40.3%

Method	Top-1	Top-5	Top-10
HR (64×64)	36.8%	55.9%	63.8%
LR (16×16)	12.4%	27.4%	37.1%
Bicubic	11.6%	27.5%	37.6%
DFCG [11]	9.6%	23.7%	34.8%
UR-DGN [9]	12.2%	29.0%	38.7%
DCGAN [22]	9.3%	24.9%	33.9%
PRSR [25]	13.3%	29.7%	40.1%
SR-GAN [15]	11.6%	23.2%	36.3%
Wavelet-SRNet [17]	12.0%	25.5%	38.8%
SiGAN (ResNet)	17.9%	32.9%	48.1%
SiGAN (DenseNet)	18.3%	33.5%	50.0%

_

Objective Result (8x8)

CCHSU@ACVLab

Summary of Our SiGAN

Contributions

- Label information is embedded in the generator of GAN
 - A Guider for the generator
- High visual quality and identity-recognizable reconstruction
- Faster hallucination process

Research Highlights

- Overview of Deep Learning
 - Supervised Unsupervised Semi-supervised Learning

Pairwise Learning based Applications

- Identity-preserving face hallucination [18-19]
- Fake face image detection [18-]
- Risk assessment module for autonomous car [19-]
- Gastric cancer detection for small-scale M-NBI dataset [19-]
- Vehicle Re-identification in the wild [19-]
- Other computer vision applications
- Summary

Outline

Self and semi-supervised learning based Applications

- Identity-preserving face hallucination [TIP19]
- Fake face image detection [ICIP19]
- Gastric cancer detection for small-scale M-NBI dataset [US. Patent]
- Vehicle Re-identification in the wild [VCIP19]
- Resolution-aware Super-resolution [SAM20]
- Summary

FAKE IMAGE DETECTION: ANTI-GAN

IS3C 2018, ICIP 2019*, Journal of Applied Sciences (SCI, Q1) ICIP Best Student Paper Award (2071 submissions) Contribute to my MOST project High impact papers

Detecting the Fake Images

- The related techniques to detect the fake images
 - Intrinsic feature based approach
 - Image forensic
 - Image forgery detection
 - Extrinsic feature based approach: Watermarking
- Intrinsic feature based approach is relatively practical
 - However, such generated images didn't have such intrinsic features
 - Image is generated directly from noise
 - No source

Problems Caused by Fake Images

 Improper use of such fake multimedia will lead to a serious consequence

Police purpose, on purpose misleading, or business use

FaceForensic++

- Google provides a large-scale fake image dataset (2019/9)
 - Our initial work was published in 2018/10
- DeepFake Challenge (hosted by Kaggle since 2020/2)
 - AWS, Facebook, Microsoft

An Example of Traditional Image Forensic

(a) Original Image 1 (b) Texture replaced

An Example of Traditional Image Forensic

(a) Fake Image 1 (b) Fake Image 2

How to effectively detect such fake images remains big problem!!

We propose a novel framework to effectively address this issue!!

Fake Image Detection

- Directly learning a classifier in supervised learning manner may be ineffective.
 - It is hard to collect all GANs to learn
 - The generator can be improved
 - The fake image detector should be improved as well
 - It is too impractical
- Instead of supervised learning, we adopt pairwise learning to effectively capture the common features across different GANs
 - Pairwise learning (PL)
 - Two-step learning policy
 - Called deep forgery detector (DeepFD)

The Proposed Framework

PL1: Contrastive Loss

 Minimizing the feature distance between the paired inputs if they are all fake or real.

$$E_W(\mathbf{x}_1, \mathbf{x}_2) = ||D_1(\mathbf{x}_1) - D_1(\mathbf{x}_2)||,$$

- Where D indicates feature representation of JDF of an image
- The contrastive loss function of the proposed JDF will be:

$$L(W, (P, \mathbf{x}_1, \mathbf{x}_2)) = \frac{1}{2} (p_{ij}(\mathbf{E}_W)^2 + (1 - p_{ij})(\max(0, m - \mathbf{E}_W)^2),$$

• where p_{ij} indicates genuine ($p_{ij} = 1$) and impostor ($p_{ij} = 0$) pairs

PL2: Triplet Loss

Calculate the distance between anchor and positive/negative samples

$$\sum_{i}^{N_{r}} \left[\| \mathbf{D}_{1}(\mathbf{x}_{a}) - \mathbf{D}_{1}(\mathbf{x}_{p}) \|_{2}^{2} - \| \mathbf{D}_{1}(\mathbf{x}_{a}) - \mathbf{D}_{1}(\mathbf{x}_{n}) \|_{2}^{2} + a \right]_{+}$$

Learning Tricks

- Hard mining is the most important
 - Similar to object detection nets
- Hard positive
 - Same person but different poses in two images
- Hard Negative
 - Different person but looks similar to each other in two images
 - A fake image looks very real
 - A real one looks something wrong
 - May cause by noise or illuminance variantions.

Common Fake Feature Learning

Common Fake Feature Learning

Classification Network Learning

- Concatenating "traditional classifiers"
 - SVM, Random forest, or Bayer classifier
 - However, we don't know what features is useful for fake image detection
- Use End-to-end and trainable classifier
 - Learning in supervised way
 - Based on the pre-trained network (CDNN) learned by the proposed pairwise learning

Classification Network Learning

The loss function of the classifier can be defined as a crossentropy loss:

$$L_C(\mathbf{x}_i, \mathbf{y}_i) = -\sum_{i}^{N_T} \left(D_2(D_1(\mathbf{x}_i)) \log \mathbf{y}_i \right).$$

where N_T is the number of the training set and y_i is the label indicating 0 (fake) or 1 (real)

Network Architecture

Layers	CDNN	Classifier		
1	Conv.layer, kernel=7*7, stride=4, channel=96	Conv. layer, kernel=3*3, channel = 2		
2	Residual block *2, channel=96	Global average pooling		
3	Residual block *4, channel=128	Fully connected layer, neurons=2 Softmax		
4	Residual block *3, channel=256			
5	Fully connected layer, neurons=128 Softmax layer			

Experimental Results

Experimental settings

- We collect 5 state-of-the-art GANs to generate fake images pool
 - 1) DCGAN (Deep convolutional GAN) [2]
 - 2) WGAP (Wasserstein GAN) [3]
 - 3) WGAN-GP (WGAN with Gradient Penalty) [4]
 - 4) LSGAN (Least Squares GAN) [5]
 - 5) PGGAN [1]
- Criterion
 - Good quality, different methodologies
- Each GAN generates 200,000 fake images with sized of 64x64

Karras, Tero, et al. "Progressive growing of GANS for improved quality, stability, and variation," *arXiv preprint arXiv:1710.10196*, 2017.
Radford, et al.. "Unsupervised representation learning with deep convolutional generative adversarial networks," *arXiv preprint arXiv:1511.06434*, 2015.
M. Arjovsky, et al., "Wasserstein gan," *arXiv preprint arXiv:1701.07875* (2017).
Gulrajani, Ishaan, et al. "Improved training of wasserstein gans," *Advances in Neural Information Processing Systems*. 2017.
X. Mao, et al. "Least squares generative adversarial networks," *2017 IEEE International Conference on Computer Vision (ICCV)*. IEEE, 2017.

Experimental Results

- Experimental settings
 - We randomly pick up 202,599 fake images from the fake images pool
 - Total number of training images: 400,198
 - Total number of test images: 5,000
 - Parameter m in contrastive is 0.5
 - JDF learning in the first two epochs
 - Discriminator learning in the following epochs
- We exclude the fake images generated from one of the collected GANs to verify the proposed method is generalized

Objective Quality Comparison

The performance comparison between the proposed method and other methods

Method/Test target	LSGAN		DCGAN		WGAN		WGAN-GP		PGGAN	
	precision	recall								
Method in [5]	0.205	0.580	0.253	0.774	0.235	0.673	0.242	0.604	0.222	0.862
Method in [7]	0.819	0.528	0.848	0.790	0.817	0.822	0.816	0.679	0.798	0.788
Method in [8]	0.833	0.725	0.812	0.833	0.840	0.809	0.826	0.733	0.824	0.838
Method in [15]	0.947	0.922	0.871	0.844	0.838	0.847	0.818	0.835	0.926	0.918
Baseline-I	0.921	0.915	0.887	0.831	0.860	0.855	0.822	0.837	0.919	0.898
Baseline-II	0.939	0.929	0.878	0.851	0.840	0.863	0.845	0.844	0.922	0.928
Baseline-III	0.845	0.785	0.796	0.816	0.833	0.799	0.819	0.805	0.835	0.854
The proposed	0.981	0.956	0.986	0.986	0.895	0.881	0.876	0.881	0.951	0.936

Convergence Analysis of CFF

Performance Comparison

Supervised learning (Baseline-II) vs. pairwise learning

Precision Curves for GANs Used in Our Experiments

Visualized Feature Maps of Fake Image

 Fully convolutional network can be used to visualize the unrealistic details

(a)-(j): Fake images. (k)-(t) Real ones

Draw in red indicates fake features.

Conclusion

- The proposed a novel deep forgery discriminator (DeepFD) can successfully detect the fake images
- Contributions
 - The first work to generalize the problems of detecting the fake images
 - The proposed CDNN can capture the common feature for fake images generated by different GANs
 - Visualization of the proposed DeepFD can be used to further improve the detector algorithm

Outline

Self and semi-supervised learning based Applications

- Identity-preserving face hallucination [TIP19]
- Fake face image detection [ICIP19]
- Gastric cancer detection for small-scale M-NBI dataset [US. Patent]
- Vehicle Re-identification in the wild [VCIP19]
- Other computer vision applications
- Summary

SSSNET: SMALL-SCALE-AWARE SIAMESE NETWORK FOR GASTRIC CANCER DETECTION

IEEE AVSS'19, Oral Contribute to MOST-AI Project (NTHU)

ACVLab

Introduction

Detection of early gastric cancer cells by M-NBI technology

Motivation

- #Medical images is limited
 - Transfer learning is hard to used in this case
- Small scale training sets → overfitting
 - Neural network architecture should be simplified

Related Work

- Few-Shot Learning
 - Model-based [1]
 - Transfer learning, domain adaptation
 - Metric-based [2]
 - Siamese network based
 - Optimization approach [3]

1.Binford, Thomas O. "Survey of model-based image analysis systems." The International Journal of Robotics Research 1.1 (1982): 18-64. 2.Ferzli, Rony, and Lina J. Karam. "A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB)." IEEE transactions on image processing 18.4 (2009): 717-728.

3.Afonso, Manya V., José M. Bioucas-Dias, and Mário AT Figueiredo. "Fast image recovery using variable splitting and constrained optimization." IEEE transactions on image processing 19.9 (2010): 2345-2356. 2022/5/10 CCHSU@ACVLab

Our Method

Figure 1. The proposed method including SSSNet and learning policy.

Method based on Contrastive Loss

 Based on pairwise learning to learn the discriminative feature first

$$E_W(x_1, x_2) = ||f(x_1) - f(x_2)||_2^2$$

$$L(W, (P, x_1, x_2)) = 0.5 \times (y_{ij}E_w^2) + (1 - y_{ij}) \times max(0, (m - E_w)_2^2)$$

Method (Fine-tuning Phase)

Learning a classifier by cross-entropy

$$L_c(x_1, p_1) = -\sum_{i}^{N_T} (f_{cls}(f_{sia}(x_1)) \log p_i)$$

The total loss function will be

$$L(x_1, x_2, p_1, y_1) = \alpha L_c(x_1, p_1) + (1 - \alpha) L(W, (P, x_1, x_2))$$

- where α is a balance factor
 - $\alpha = 0$ for the first 10 epochs
 - $\alpha = 0.4$ for the rest

Experiment Setting

- Data type
 - Typical case: 130 images
 - Difficult case: 343 images
 - May have some features that is similar to cancerous
- Training/test split
 - #training: 400
 - #validation: 13
 - #test: 60
- Parameters
 - Learning rate: 1e-3
 - Cosine learning rate decay
 - #epoch: 60
 - We adopt Adam optimizer in the experiments

Experimental Result

Table 1. Comparison of detection rate evaluated for the proposed method and other baselines.

Method	Precision	Recall	Specificity	Accuracy	F-measure
DenseNet-12	0.417	0.385	0.500	0.444	0.400
ResNeXt	0.500	0.462	0.571	0.519	0.480
EffcientNet	0.429	0.462	0.429	0.444	0.444
MobileNet v3	0.467	0.538	0.429	0.481	0.500
Baseline-1	0.815	0.838	0.779	0.810	0.826
Baseline-2	0.462	0.462	0.500	0.481	0.462
SSSnet(proposed)	0.934	0.900	0.937	0.918	0.917

Conclusion

- Based on :
 - Siamese network
 - Simplified DenseNet
- SSSNet architecture can be used to learn the discriminative feature from a small-scale training set effectively
- Can improve the performance of gastric cancer detection in M-NBI images.

Outline

Self and semi-supervised learning based Applications

- Identity-preserving face hallucination [TIP19]
- Fake face image detection [ICIP19]
- Gastric cancer detection for small-scale M-NBI dataset [US. Patent]
- Vehicle Re-identification in the wild [VCIP19]
- Summary

STRONGER BASELINE FOR VEHICLE RE-IDENTIFICATION

VCIP19' 3rd place, Grand Challenge on Vehicle Re-identification in the wild Contribute to my MOST project

ACVLab

Vehicle/Person Re-Identification (ReID) Tasks

- Given a query image
 - Find the image(s) with the same identity with the query image
 - Discriminative feature is necessary

SOTA in ReID

- It is common way to learn the discriminative feature based on contrastive and triplet loss functions
- Current SOTA: Strong baseline
 - Bigger feat map + center loss

Luo, Hao, et al. "Bag of tricks and a strong baseline for deep person re-identification." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2019.

Strong Baseline for ReID

- SOTA in person/vehicle ReID tasks
 - The dataset is contracted in a controllable environment
- Shortcomings:
 - ResNet-50 backbone: not powerful now
 - Not verified in a real-world dataset
 - Vehicle ReID dataset in the wild [1]
 - No cross-layer feature maps are used

^[1] Lou, Yihang, et al. "Veri-wild: A large dataset and a new method for vehicle re-identification in the wild." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2019.

Proposed Stronger Baseline for ReID

- A good baseline leads to good performance in ReID
 - We have integrated
 - Anit-aliasing CNN
 - Proposed by Adobe Research (ICML19)
 - Multi-layer Feature Fusion Module (MFFM)
 - Inspired by M2Det (object detection)

Deep Networks are not Shift-Invariant

Accuracy vary when shifting pixels

Azulay and Weiss. Why do deep convolutional networks generalize so poorly to small image transformations? In ArXiv, 2018. Engstrom, Tsipras, Schmidt, Madry. A rotation and a translation suffice: Fooling cnns with simple transformations. In ArXiv, 2017.

But why?

- Convolutions are shift-equivariant
- Pooling builds up shift-invariance
 - Max pooling
 - Strided convolution
- Anti-aliasing?
 - Blurring before downsampling
 - Basic concept in [1]

[1] Adrian Davies and Phil Fennessy (2001). *Digital imaging for photographers* (Fourth ed.). Focal Press. ISBN 0-240-51590-0.

Multi-layer Feature Fusion Module (MFFM)

- We adopt middle- and high-level features as our base feature for ReID
 - To better preserving the spatial information
 - We adopt global averaging pooling instead of fully connected layer

Experimental Results

- Dataset: ReID-Wild
 - Dataset
 - 416,314 vehicle images with 40,671 identities
 - Training set:
 - 380,000 images with 40,671 identities
 - Validation set:
 - 36,314 images with 40,671 identities
 - Testing:
 - Small: 3,000 identities with 38,862 images
 - Middle: 5,000 identities with 64,390 images
 - Large: 10,000 identities with 128,518 images

Experimental Results

				_
Methods	Small	Middle	Large	
GoogLeNet [12]	24.27	24.15	21.53	-
Triplet [13]	15.69	13.34	9.93	
Softmax [14]	26.41	22.66	17.62	
CCL [15]	22.50	19.28	14.81	
HDC [16]	29.14	24.76	18.30	
GSTE [17]	31.42	26.18	19.50	
UGAN [18]	29.86	24.71	18.23	
EN [7]	28.77	24.63	19.48	
FDA w/ At [7]	32.40	27.10	21.13	
FDA [7]	35.11	29.80	22.78	
BTSB [4]	39.61	33.24	28.98	_
Proposed	51.38	43.61	37.91	_

mAP (Mean Averaging Precision) comparison

	Method	Small		Middle		Large	
	Methou	R1	R5	R1	R5	R1	R5
	GoogLeNet [12]	57.16	75.13	53.16	71.1	44.61	63.55
	Triplet [13]	44.67	63.33	40.34	58.98	33.46	51.36
	Softmax [14]	53.4	75.03	46.16	69.88	37.94	59.89
	CCL [15]	56.96	75.0	51.92	70.98	44.6	60.95
	HDC [16]	57.1	78.93	49.64	72.28	43.97	64.89
Іор-к Ассигасу	GSTE [17]	60.46	80.13	52.12	74.92	45.36	66.5
Comparison (UGAN [18]	58.06	79.6	51.58	74.42	43.63	65.52
Companson	EN [7]	57.13	77.33	52.86	73.18	43.02	66.3
	FDA w/ At [7]	61.93	80.48	55.62	75.64	46.48	68.36
	FDA [7]	64.03	82.8	57.82	78.34	49.43	70.48
	BTSB [4]	71.73	85.53	66.5	81.65	60.59	76.77
	Proposed	82.73	92.53	78.26	91.84	71.18	87.41

Ablation Study

- Baseline-I: Proposed method without anti-aliasing
- Baseline-II: Proposed method without MFFM

Method	Small		Middle		Large	
Wiethou	R1	R5	R1	R5	R1	R5
Baselin-I	75.15	84.61	68.1	83.42	63.71	79.91
Baselin-II	76.33	86.71	70.71	85.75	65.33	82.64
BTSB [4]	71.73	85.53	66.5	81.65	60.59	76.77
Proposed	82.73	92.53	78.26	91.84	71.18	87.41

Top-k Accuracy Comparison

Top-k Accuracy Comparison

Methods	Small	Middle	Large
Baselin-I	41.22	34.63	29.41
Baselin-II	42.37	38.56	32.64
BTSB [4]	39.61	33.24	28.98
Proposed	51.38	43.61	37.91

Conclusion

- Main contribution
 - Stronger baseline
 - Multi-layer feature fusion is effective
 - Shift-invariant (anti-aliasing) CNN can capture better visual features
 - We have won the 3rd place in VCIP grand challenge
 - Only 3 days to train

Outline

Overview of Deep Learning

Supervised – Unsupervised – Semi-supervised Learning

Self and semi-supervised learning based Applications

- Identity-preserving face hallucination [TIP19]
- Fake face image detection [ICIP19]
- Gastric cancer detection for small-scale M-NBI dataset [US. Patent]
- Vehicle Re-identification in the wild [VCIP19]
- Resolution-aware Super-resolution [SAM20]
- Other computer vision applications
- Summary

Outline

- Self and semi-supervised learning based Applications
 - Identity-preserving face hallucination [TIP19]
 - Fake face image detection [ICIP19]
 - Gastric cancer detection for small-scale M-NBI dataset [US. Patent]
 - Vehicle Re-identification in the wild [VCIP19]
- Other computer vision applications
- Summary

Conclusion

- Pairwise learning is useful in various tasks
 - More and more attraction about "contrastive coding"
 - Based on pairwise learning
 - It is not only good at feature learning (semi-supervised) but also be able to greatly integrate with supervised learning
 - Discriminative feature learning
 - Limited data
 - Small-scale dataset
 - Medical image dataset
 - Partial label information

More information can be found at <u>https://cchsu.info</u>

