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Supervised learning

y = f(x)

 Training: 
 given a training set of labeled examples {(x1,y1), …, (xN,yN)}, estimate the 

prediction function f by minimizing the prediction error on the training set

 Testing:
 apply f to a never before seen test example x and output the predicted value y = 

f(x)

output prediction 
function

Image 
feature

Slide credit: L. Lazebnik
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Example: Scene Categorization

 Is this a kitchen?
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Image features

Training 
Labels

Training 
Images
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Training

Training
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BASELINE: IMAGE RECOGNITION
WITH FEATURES
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Data Pipeline for Image Recognition

Image Data

RGB、HSI、Medical 
signal…

Domain-wise Feature 
Transformation

Classification
/ Regression 

model
(or search)
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Global feature 
representation

Histogram

Filter based

Local feature 
(pattern)

Local 
responses 
like SIFT, 

SURF, ORB, 
LBP, LTP…etc



Feature-based Image Classification

Global Feature
 It is nothing new.
 Just use the feature extracted from images and followed by feeding 

the feature to the classifier.

 Local Feature
 #features per image fixed.
 Similar to global one

 #features variant
 Matching is necessary….
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Features

 Raw pixels

 Histograms

GIST descriptors

 SIFT/SURF/LBP/HOG…

 Learning features from data

Slide credit: L. Lazebnik
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Classifiers

Training 
Labels

Training 
Images

Classifier 
Training

Training

Image 
Features

Trained 
Classifier

4/25/2022 ACVLab@NCKU 11



Learning a classifier

Given some set of features with corresponding labels, learn a 
function to predict the labels from the features

x x

x x

x

x
x

x

o
o

o

o

o

x2

x1
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How many visual object categories are there?

Biederman 19874/25/2022 ACVLab@NCKU 13
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OBJECTS

ANIMALS INANIMATE
(無生命)

PLANTS

MAN-MADENATURALVERTEBRATE…..

MAMMALS BIRDS

GROUSEBOARTAPIR CAMERA
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Specific recognition tasks
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• outdoor/indoor
• city/forest/factory/etc.

Scene categorization or classification
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• street
• people
• building
• mountain
• tourism
• cloudy
• brick
• …

Image annotation / tagging / attributes
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• find pedestrians

Object detection
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mountain

building
tree

banner

market
people

street lamp

sky

building

Image parsing / semantic segmentation
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Scene understanding?
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Eigenfaces (Turk & Pentland, 1991)
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Color Histograms

Swain and Ballard, Color Indexing, IJCV 1991.4/25/2022 ACVLab@NCKU 23

http://www.inf.ed.ac.uk/teaching/courses/av/LECTURE_NOTES/swainballard91.pdf


History of ideas in recognition

 1960s – early 1990s: the geometric era
 1990s: appearance-based models
 1990s – present: sliding window approaches
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Sliding window approaches
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History of ideas in recognition

 1960s – early 1990s: the geometric era
 1990s: appearance-based models
Mid-1990s: sliding window approaches
 Late 1990s: local features
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Local features for object instance recognition

D. Lowe (1999, 2004)4/25/2022 ACVLab@NCKU 27



Combining local features, indexing, and spatial constraints

Image credit: K. Grauman and B. Leibe

Large-scale image search
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Combining local features, indexing, and spatial constraints

Philbin et al. ‘07

Large-scale image search
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Combining local features, indexing, and spatial constraints

Large-scale image search
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History of ideas in recognition

 1960s – early 1990s: the geometric era
 1990s: appearance-based models
Mid-1990s: sliding window approaches
 Late 1990s: local features
 Early 2000s: parts-and-shape models
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Parts-and-shape models

Model:
 Object as a set of parts
 Relative locations between parts
 Appearance of part

Figure from [Fischler & Elschlager 73]
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Representing people
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Discriminatively trained part-based models

 P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, 
"Object Detection with Discriminatively Trained Part-Based 
Models," PAMI 2009
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http://www.ics.uci.edu/%7Edramanan/papers/latentmix.pdf


History of ideas in recognition

 1960s – early 1990s: the geometric era
 1990s: appearance-based models
Mid-1990s: sliding window approaches
 Late 1990s: local features
 Early 2000s: parts-and-shape models
Mid-2000s: bags of features
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Bag-of-features models
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Object Bag of ‘words’

Bag-of-features models
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Objects as texture

 All of these are treated as being the same



 No distinction between foreground and background: scene 
recognition?
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Origin 1: Texture recognition

 Texture is characterized by the repetition of basic elements or 
textons
 For stochastic textures, it is the identity of the textons, not their 

spatial arrangement, that matters

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 20034/25/2022 ACVLab@NCKU 39



Origin 1: Texture recognition

Universal texton dictionary

histogram

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; 
Lazebnik, Schmid & Ponce, 2003
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Origin 2: Bag-of-words models

Orderless document representation: frequencies of words from a 
dictionary  Salton & McGill (1983)
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Origin 2: Bag-of-words models

Orderless document representation: frequencies of words from a 
dictionary  Salton & McGill (1983)

US Presidential Speeches Tag Cloud
http://chir.ag/phernalia/preztags/4/25/2022 ACVLab@NCKU 42
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Origin 2: Bag-of-words models

Orderless document representation: frequencies of words from a 
dictionary  Salton & McGill (1983)

US Presidential Speeches Tag Cloud
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Bag-of-features steps

 Extract features
 Learn “visual vocabulary”
Quantize features using visual vocabulary 
 Represent images by frequencies of “visual words” 
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1. Feature extraction

 Regular grid or interest regions
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Normalize 
patch

Detect patches

Compute 
descriptor

Slide credit: Josef Sivic

1. Feature extraction
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…

1. Feature extraction

Slide credit: Josef Sivic
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2. Learning the visual vocabulary

…

Slide credit: Josef Sivic
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2. Learning the visual vocabulary

Clustering

…

Slide credit: Josef Sivic
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2. Learning the visual vocabulary

Clustering

…

Slide credit: Josef Sivic

Visual vocabulary
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K-means clustering

Want to minimize sum of squared Euclidean distances between 
points xi and their nearest cluster centers mk

 Algorithm:

 Randomly initialize K cluster centers
 Iterate until convergence:
 Assign each data point to the nearest center
 Recompute each cluster center as the mean of all points assigned to 

it

∑ ∑ −=
k

k
i

ki mxMXD
cluster

cluster
inpoint

2)(),(
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Clustering and vector quantization

 Clustering is a common method for learning a visual vocabulary 
or codebook
 Unsupervised learning process
 Each cluster center produced by k-means becomes a codevector
 Codebook can be learned on separate training set
 Provided the training set is sufficiently representative, the codebook 

will be “universal”

 The codebook is used for quantizing features
 A vector quantizer takes a feature vector and maps it to the index of 

the nearest codevector in a codebook
 Codebook = visual vocabulary
 Codevector = visual word
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Example codebook

…

Source: B. Leibe

Appearance codebook
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Another codebook

Appearance codebook
…

…
…
…

…

Source: B. Leibe
4/25/2022 ACVLab@NCKU 55



Visual vocabularies: Issues

• How to choose vocabulary 
size?
 Too small: visual words not 

representative of all patches
 Too large: quantization 

artifacts, overfitting
• Computational efficiency
 Vocabulary trees 

(Nister & Stewenius, 2006)
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But what about layout?

All of these images have the same color histogram
4/25/2022 ACVLab@NCKU 57



Spatial pyramid

Compute histogram in each spatial bin
4/25/2022 ACVLab@NCKU 58



Spatial pyramid representation

 Extension of a 
bag of features
 Locally orderless

representation at 
several levels of 
resolution

level 0

Lazebnik, Schmid & Ponce (CVPR 2006)4/25/2022 ACVLab@NCKU 59



Spatial pyramid representation

 Extension of a 
bag of features
 Locally orderless

representation at 
several levels of 
resolution

level 0 level 1
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Spatial pyramid representation

 Extension of a 
bag of features
 Locally orderless

representation at 
several levels of 
resolution

level 0 level 1 level 2

Lazebnik, Schmid & Ponce (CVPR 2006)4/25/2022 ACVLab@NCKU 61



Scene category dataset

Multi-class classification results
(100 training images per class)
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Caltech101 dataset
http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html

Multi-class classification results (30 training images per class)
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Multi-view matching

vs

…

?

Matching two given 
views for depth 

Search for a matching 
view for recognition
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Inverted file index

Database images are loaded into the index 
mapping words to image numbers
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Inverted file index

 New query image is mapped to indices of database images that share a word.
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Inverted file index

 Key requirement for inverted file index to be efficient: sparsity
 If most pages/images contain most words then you’re no better 

off than exhaustive search.
 Exhaustive search would mean comparing the word distribution of a 

query versus every page.
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Comparing bags of words

 Rank frames by normalized scalar product between their 
(possibly weighted) occurrence counts---nearest neighbor search 
for similar images.

[5  1   1    0][1  8   1    4]          

jd
 q for vocabulary of V words
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Comparing bags of words

Other common histogram comparisons:

[5  1   1    0][1  8   1    4]          

jd
 q

Histogram intersection

Chi squared
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Instance recognition: remaining issues

 How to summarize the content of an entire image?  And gauge 
overall similarity?
 How large should the vocabulary be?  How to perform 

quantization efficiently?
 Is having the same set of visual words enough to identify the 

object/scene?  How to verify spatial agreement?
 How to score the retrieval results?
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Vocabulary size

Results for recognition task 
with 6347 images 

Nister & Stewenius, CVPR 2006Influence on performance, sparsity

Branching 
factors
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BOOSTED IMAGE MATCHING

Following slides by David Nister (CVPR 2006)
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Vocabulary trees: complexity

Number of words given tree parameters: branching factor and number of 
levels

branching_factor^number_of_levels

Word assignment cost vs. flat vocabulary
O(k) for flat
O(logbranching_factor(k) * branching_factor)

Is this like a kd-tree?
Yes, but with better partitioning and defeatist 

search.
This hierarchical data structure is lossy – you 

might not find your true nearest cluster.
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Higher branch factor works better (but slower)
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Visual words/bags of words

 +  flexible to geometry / deformations / viewpoint
 +  compact summary of image content
 +  provides fixed dimensional vector representation for sets
 +  very good results in practice

 background and foreground mixed when bag covers whole 
image
 optimal vocabulary formation remains unclear
 basic model ignores geometry – must verify afterwards, or 

encode via features
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Instance recognition:
remaining issues

 How to summarize the content of an entire image?  And gauge 
overall similarity?
 How large should the vocabulary be?  How to perform 

quantization efficiently?
 Is having the same set of visual words enough to identify the 

object/scene?  How to verify spatial agreement?
 How to score the retrieval results?
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Can we be more accurate?

 So far, we treat each image as containing a “bag of words”, 
with no spatial information

a
f

z

e

e

a
f
ee

h

hWhich 
matches 
better?
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Can we be more accurate?

 So far, we treat each image as containing a “bag of words”, 
with no spatial information

Real objects have consistent geometry
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Spatial Verification

Both image pairs have many visual words in common.

Slide credit: Ondrej Chum

Query Query

DB image with high BoW 
similarity DB image with high BoW 

similarity
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Only some of the matches are mutually consistent

Slide credit: Ondrej Chum

Query Query

DB image with high BoW 
similarity DB image with high BoW 

similarity

Spatial Verification
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Spatial Verification: two basic strategies

 RANSAC
 Typically sort by BoW similarity as initial filter
 Verify by checking support (inliers) for possible transformations 
 e.g., “success” if find a transformation with > N inlier correspondences

Generalized Hough Transform
 Let each matched feature cast a vote on location, scale, orientation 

of the model object 
 Verify parameters with enough votes
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RANSAC verification
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Recall: Fitting an affine transformation
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Approximates viewpoint 
changes for roughly 
planar objects and 
roughly orthographic 
cameras.
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RANSAC verification
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Instance recognition:
remaining issues

 How to summarize the content of an entire image?  And gauge 
overall similarity?
 How large should the vocabulary be?  How to perform 

quantization efficiently?
 Is having the same set of visual words enough to identify the 

object/scene?  How to verify spatial agreement?
 How to score the retrieval results?

4/25/2022 ACVLab@NCKU 113



Scoring retrieval quality

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

Query

Database size: 10 images
Relevant (total): 5 images 

Results (ordered):

precision = #relevant / #returned
recall = #relevant / #total relevant

Slide credit: Ondrej Chum
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Query Expansion

…

Query image

Results

New query

Spatial verification

New results

Chum, Philbin, Sivic, Isard, Zisserman: Total Recall…, ICCV 2007
Slide credit: Ondrej Chum
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Recognition via alignment

 Pros: 
 Effective when we are able to find reliable features within clutter
 Great results for matching specific instances

 Cons:
 Scaling with number of models
 Spatial verification as post-processing – not seamless, expensive for 

large-scale problems
 Not suited for category recognition.
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Summary

Matching local invariant features
 Useful not only to provide matches for multi-view geometry, but also 

to find objects and scenes.
 Bag of words representation: quantize feature space to make 

discrete set of visual words
 Summarize image by distribution of words
 Index individual words

 Inverted index: pre-compute index to enable faster search at 
query time
 Recognition of instances via alignment: matching local features 

followed by spatial verification
 Robust fitting : RANSAC, GHT
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INTRODUCTION TO 
IMAGE PROCESSING

Chih-Chung Hsu (許志仲)
Assistant Professor
ACVLab, Institute of Data Science
National Cheng Kung University
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Applications- Why/ Who

 Useful in a variety of fields from science to design
 Adjust images and run analysis 
 Add filters and text 
 Make images easier to view
 Count cells or items in an image 
 Track movement
 Facial Recognition
 Create movies/gifs
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Basics- What is an Image?

 Image Type
 Vector
 Made of independent and 

editable 
lines/shapes 

 Pixel 
 Also called bitmap or raster
 Made of uniform grid of 

colored dots (pixels)

 Compression
 JPEG  Common
 Loss vs Lossless

123

Format
s

https://www.slideshare.net/bobwatson/image-file-formats
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Opening an image in Python

 Need Numpy and Scipy:
 Numpy: basic array manipulation 
 Pixel images are stored as arrays
 Each pixel has (x,y,rgb)
 Means you can loop through images and has array functions

 Scipy: dedicated to image processing

124
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Here are the imports for this first section:

This is how I import an image using numpy and PIL. 
Make sure you have navigated to the correct file folder.

Opening an image in Python



Image Properties

Resolution
 Size of each pixel expressed as 
number of pixels per unit 
 Dots per inch (DPI)
 Pixels per inch (PPI)

 Dimensions
 Number of pixels along X and 

Y axes 
 Can be: 
 Pixels (800 X 600 pixels)
 Physical (89 mm X 66 mm)

Color
 Models:
 RGB
 CMYK

 Format:
 RGB Values
 Hex Values 

126
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Code

 The following sections reference python code
 The title is a description of the section
 Information about the images needed is in notes
 Most of it works with your image of choice
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Basics of Numpy/Scipy and PIL
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Converting between np.array and PIL
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Using Numpy allows you to 
iterate through pixels and make 
very specific changes. Most 
things are best done using PIL or 
a pre-made function, but all 
things can be done “manually”.  

Manually Working with np.array



131

Manually Working with np.array

 You can get very (overly?) specific like in the following case 
where I have removed the green check from the image. I used 
PixelMath to find the exact range of green in the image. 
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Creating a Gif or Movie from a Series of Images 

 First, I need to navigate to an empty folder and fill it with 
numbered images that I want to turn into a movie/gif. 
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Denoising and Feature Extraction

 This code is from the SciKit tutorial on plot boundaries listed in 
references
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Denoising and Feature Extraction

 This code is from the SciPy tutorial listed in references
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This code is from the SciPy tutorial 
listed in references

Denoising and Feature Extraction



More Techniques

 Plenty of other things possible: 
 Segmentation: 
 Mark edges of features in image

More Feature Extraction
 Computer vision can detect features (ie corners)

 Facial Recognition 
 Using OpenCV or others 

136
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 Practical Computing for Biologists by Haddock & Dunn
 https://realpython.com/blog/python/face-recognition-with-python/
 https://pillow.readthedocs.io/en/3.1.x/reference/Image.html
 http://www.scipy-

lectures.org/advanced/image_processing/#geometrical-
transformations
 http://scikit-

image.org/docs/dev/user_guide/transforming_image_data.html
 http://www.scipy-lectures.org/packages/scikit-

image/auto_examples/plot_boundaries.html
 https://www.safaribooksonline.com/library/view/programming-

computer-vision/9781449341916/ch01.html
137
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